MIXED PLaNe boundary value problem of the THEORY OF ELASTICITY FOR A QUADRANT

(SMESHANNAIA PLOSKAIA ZADACHA TEORII UPRUGOSTI DLIA KVADRANTA)

PMM Vol.23, No.5, 1959. pp. 981-984

L. M. KURSHIN

(Novosibirsk)

```
(Received 24 April 1959)
```

The problem can be reduced to an integral equation determining shear stresses at a clamped edge. The resulting solution makes it possible to supplement the results of investigation $[1,2,3]$.

Let us study the stress problem in an elastic quadrant $x>0, y>0$ in the plane of variable $z=x+i y$ under the action of a concentrated force $Q+i P$, applied at the point $z_{0}=x_{0}+i y_{0}\left(x_{0}>0, y_{0}>0\right)$. Let us assume that when $y=0$ the displacements t, u are equal to zero, and when $x=0$ the external loading are equal to zero (Fig. 1).

For the solution of the problem let us complete the quadrant to form a half-plane $x>0$. Let us load symmetrically the new quadrant $x>0, y<0$ at the point $z_{0}=x_{0}-i y_{0}$ with a force Q - iP. Let us also introduce an additional, temporarily arbitrary loading $q(x)$ distributed along the x-axis. Evidently, under the action of symmetrical loadings $Q+i P, Q-i P$

Fig. 1. and $q(x)$ on the half-plane $x>0$ when $y=0$, the displacement v is equal to zero. The loading $q(x)$ will be determined in such a way as to fulfil the condition $u=0$ on the x axis.

Let us study the state of stress of the given half-plane $x>0$ with free edge $x=0$ resulting from loadings $Q+i P, Q-i P$ and $q(x)$.

If for the stresses we make use of known representation,

$$
\begin{gather*}
X_{x}+Y_{y}=2[\Phi(z)+\overline{\Phi(z)}] \\
Y_{y}-X_{x}+2 i X_{y}=2\left[\bar{z} \Phi^{\prime}(z)+\Psi^{\prime}(z)\right] \tag{1}
\end{gather*}
$$

then for a general case when the force $P+i Q$ is applied at the point $z_{0}=x_{0}+i y_{0}$ according to the formulas* of the paper [5] it is possible to obtain

$$
\begin{equation*}
\Phi_{1}\left(Q+i P, z, z_{0}\right)=-\frac{Q+i P}{2 \pi(1+\varkappa)}\left(\frac{1}{z-z_{0}}+\frac{\%}{z+\bar{z}_{0}}\right)-\frac{Q-i P}{2 \pi(1+x)} \frac{z_{0}+\bar{z}_{0}}{\left(z+\bar{z}_{0}\right)^{2}} \tag{2}
\end{equation*}
$$

$\Psi_{1}\left(\Omega+i P, z, z_{0}\right)=\frac{(\underline{q}-i P}{2 \pi(1+x)}\left[\frac{\%}{z-z_{0}}+\frac{1}{z+\bar{z}_{0}}+\frac{z_{0}+\bar{z}_{9}}{\left(z+\bar{z}_{0}\right)^{2}}\right]-\bar{z}_{0} \frac{d \Phi_{1}}{d z} \quad\left(\%=\frac{3-v}{1+v}\right)$
In the case when loadings $Q+i P, Q-i P$ and $q(x)$ are acting on the halfmplane, we will obtain

$$
\begin{align*}
& \Phi(z)=\Phi_{1}\left(Q+i P, z, z_{0}\right)+\Phi_{1}\left(Q-i P, z, \bar{z}_{0}\right)+\int_{0}^{\infty} \Phi_{1}[\eta(t), z, t] d t \tag{3}\\
& \Psi(z)=\Psi_{1}\left(Q+i P, z, z_{0}\right)+\Psi_{1}\left(Q-i P, z, \bar{z}_{0}\right)+\int_{0}^{\infty} \Psi_{1}[\eta(t), z, t] d t
\end{align*}
$$

If $q(x)$ is determined from the condition $u=0$ when $y=0$, then the formulas (3) and (1) with $x>0, y>0$ will provide the solution of the problem for the stresses in an elastic quadrant with the assigned boundary conditions.

The condition $u=0$ when $y=0$, except for a rigid body displacement and taking into account that solution (3) satisfies the condition $v=0$ when $y=0$, is equivalent to the condition $u_{x}+i v_{x}=0$. If representations (1) are made use of, the latter can be expressed as

$$
\begin{equation*}
\varkappa \Phi(x)-\overline{\Phi(x)}-x \overline{\Phi^{\prime}(x)}-\overline{\Psi^{\prime}(x)}=0 \tag{4}
\end{equation*}
$$

Subjecting the functions $\Phi(z)$ and $\Psi(z)$ to be condition (4), we will obtain a singular integral equation for $q(x)$

$$
\begin{gather*}
2 x \int_{0}^{\infty} \frac{q(t)}{t-x} d t-\int_{0}^{\infty}\left[\frac{1+x^{2}}{t+x}+\frac{4 t(x-t)}{(t+x)^{3}}\right] q(t) d t= \tag{5}\\
\quad=(Q+i P) F\left(x, z_{0}\right)+(Q-i P) F\left(x, \bar{z}_{0}\right)
\end{gather*}
$$

where

$$
\begin{aligned}
F\left(x, z_{0}\right)= & \frac{x}{x-z_{0}}+\frac{z_{0}-\bar{z}_{0}}{\left(x-z_{0}\right)^{2}}+\frac{x}{x-\bar{z}_{0}}+\frac{1}{x+z_{0}}+\frac{x\left(z_{0}+\bar{z}_{0}\right)}{\left(x+z_{0}\right)^{2}}- \\
& -\frac{2\left(z_{0}-x\right)\left(z_{0}+\bar{z}_{0}\right)}{\left(x+z_{0}\right)^{3}}+\frac{x^{2}}{x+\bar{z}_{0}}-\frac{2 x \bar{z}_{0}}{\left(x-1 \bar{z}_{0}\right)^{2}}
\end{aligned}
$$

* In deducing expression (2), an error was corrected in one of the formulas of paper [5].

Let us normalize equation (5), assuming

$$
\begin{equation*}
\frac{1}{\pi i} \int_{0}^{\infty} \frac{q(t)}{t-x} d t=\frac{r(x)}{\sqrt{x}} \tag{6}
\end{equation*}
$$

With consideration of integrability of function $q(x)$, we have the transformation [4]

$$
\begin{equation*}
q(x)=\frac{1}{\pi i V \bar{x}} \int_{0}^{\infty} \frac{r(t)}{t-x} d t \tag{7}
\end{equation*}
$$

Introducing into equation (5) expressions (6) and (7) and changing the order of integration while taking into account that

$$
\begin{gathered}
\int_{0}^{\infty} \frac{d t}{\sqrt{\bar{t}}(t+x)\left(t_{1}-t\right)}=\frac{\pi}{\sqrt{x}\left(x+t_{1}\right)} \\
\int_{0}^{\infty} \frac{t(x-t) d t}{\sqrt{\bar{t}}\left(t_{1}-t\right)(t+x)^{3}}=-\frac{\pi \sqrt{x}}{4 x\left(x+t_{1}\right)^{3}}\left(x^{2}-6 x t_{1}+t_{1}{ }^{2}\right)
\end{gathered}
$$

we obtain the equation for the function $r(x)$

$$
\begin{align*}
& r(x)+\frac{x}{2 \pi} \int_{0}^{\infty} \frac{r(t)}{x+t} d t+\frac{4}{x \pi} \int_{0}^{\infty} \frac{t x}{(t+x)^{3}} r(t) d t= \\
& =\frac{\sqrt{x}}{2 x \pi i}\left[(Q+i P) F\left(x, z_{0}\right)+(Q-i P) F\left(x, \bar{z}_{0}\right)\right] \tag{8}
\end{align*}
$$

Assuming that $t=e^{\tau}, x=e^{\xi}, r(x)=\psi(\xi)$, we can express equation (8) in the form

$$
\begin{align*}
\psi(\xi) & +\frac{x}{2 \pi} \int_{-\infty}^{\infty} \frac{\psi(\tau) d \tau}{1+e^{\xi-\tau}}+\frac{4}{x \pi} \int_{-\infty}^{\infty} \frac{e^{\xi-\tau}}{\left(1+e^{\xi-₹}\right)^{3}} \psi(\tau) d \tau= \\
& =\frac{\sqrt{e^{\bar{E}}}}{2 x \pi i}\left[(Q+i P) F\left(e^{\xi}, z_{0}\right)+(Q-i P) F\left(e^{\xi}, \bar{z}_{j}\right)\right] \tag{9}
\end{align*}
$$

Applying to both sides of the equation (9) the Laplace transform and using the notation

$$
R(p)=\int_{-\infty}^{\infty} \psi(\xi) e^{-p \xi} d \xi
$$

we obtain

$$
\begin{gather*}
R(p)\left[1+\frac{\kappa}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-p \theta} d \theta}{1+e^{\theta}}+\frac{4}{x \pi} \int_{-\infty}^{\infty} \frac{e^{(1-p) \theta} d \theta}{\left(1+e^{\theta}\right)^{3}}\right]= \\
=\frac{1}{2 x \pi i} \int_{-\infty}^{\infty}\left[(Q+i P) F\left(e^{\xi}, z_{0}\right)+(Q-i P) F\left(e^{\xi}, \bar{z}_{0}\right)\right] e^{(1 / 2-p) \xi} d \xi \tag{10}
\end{gather*}
$$

For the integrals of the left and right sides of the equation we have

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{e^{-p \theta}}{1+e^{\theta}} d \theta=-\frac{\pi}{\sin \pi p}, \quad \int_{-\infty}^{\infty} \frac{e^{(1-p) \theta} d \theta}{\left(1+e^{\theta}\right)^{8}}=\frac{p(p+1)}{2} \frac{\pi}{\sin \pi p} \\
\int_{-\infty}^{\infty} \frac{e^{(1 / 2-p) \xi}}{e^{\xi}-z_{0}} d \xi=\frac{\pi i e^{i \pi p}}{\cos \pi p} z_{0}-p-1 / 2
\end{gathered} \quad \int_{-\infty}^{\infty} \frac{e^{(1 / 2-p) \xi}}{\left(e^{\xi}-z_{0}\right)^{2}} d \xi=-\frac{\pi i e^{i \pi p}}{2 \cos \pi p}(2 p+1) z_{0}-p-1 / 2, ~(2 p+3) z_{0}^{-p-1 / \%} .
$$

Here $-1 / 2<\operatorname{Re} p<0$. We can now write equation (10) as

$$
\begin{gather*}
R(p)\left[1-\frac{x}{2 \sin \pi p}+\frac{2}{x} \frac{p(p+1)}{\sin \pi p}\right]= \\
=\frac{e^{\pi i p}}{2 x \cos \pi p}\left\{(Q+i P\rangle F_{1}\left(p, z_{0}\right)+(Q-i P) F_{1}\left(p, \bar{z}_{0}\right)\right\} \tag{11}
\end{gather*}
$$

$$
\begin{aligned}
& \text { Here } \\
& \begin{aligned}
F_{1}\left(p, z_{0}\right)=x z_{0}-p-1 / 2
\end{aligned}\left(z_{0}-\bar{z}_{0}\right)\left(p+\frac{1}{2}\right) z_{0}^{-p-s / 2}+x^{-\bar{z}_{0}}-\frac{1}{2}+\left(-z_{0}\right)^{-p-1 / 2}- \\
& \begin{aligned}
&-x\left(z_{0}+\bar{z}_{0}\right)\left(p+\frac{1}{2}\right)\left(-z_{0}\right)^{-p-1 / 2} \\
&+2\left(z_{0}+\bar{z}_{0}\right)\left(p+\frac{1}{2}\right)^{2}\left(-z_{0}\right)^{-p-1 / 2}+x^{2}\left(-\bar{z}_{0}\right)^{-p-1 / 1}+ \\
&\left.+\frac{1}{2}\right)\left(-\bar{z}_{0}\right)^{-p-2 / 2} .
\end{aligned}
\end{aligned}
$$

Introducing $z_{0}=R_{0} e^{i a}(0<a<1 / 2 \pi)$, from equation (11) we obtain

$$
\begin{equation*}
R(p)=\frac{2 i \operatorname{tg} \pi p T(p)}{2 x \sin \pi p-x^{2}+4 p(p+1)} R_{0}^{-p-1 / 2} \tag{12}
\end{equation*}
$$

where

$$
\begin{gathered}
T(p)=2 Q x \sin \left[\pi p-\alpha\left(p+\frac{1}{2}\right)\right]+ \\
+Q\left\{-2\left(p+\frac{1}{2}\right) \sin \alpha \sin \left[\pi p-\alpha\left(p+\frac{9}{2}\right)\right]-\cos \left(p+\frac{1}{2}\right) \alpha+\right. \\
\left.+2\left(p+\frac{1}{2}\right)\left[2\left(p+\frac{1}{2}\right)-x\right] \cos \alpha \cos \left(p+\frac{3}{2}\right) \alpha+x\left[2\left(p+\frac{1}{2}\right)-x\right] \cos \left(p+\frac{1}{2}\right) \alpha\right\}+ \\
+p\left\{2\left(p+\frac{1}{2}\right) \sin \alpha \sin \left[\pi p-\alpha\left(p+\frac{3}{2}\right)\right]-\sin \left(p+\frac{1}{2}\right) \alpha+\right. \\
\left.+2\left(p+\frac{1}{2}\right)\left[2\left(p+\frac{1}{2}\right)-x\right] \cos \alpha \sin \left(p+\frac{3}{2}\right) \alpha-x\left[2\left(p+\frac{1}{2}\right)-x\right] \sin \left(p+\frac{1}{2}\right) \alpha\right\}
\end{gathered}
$$

Applying inverse transformation, we find that

$$
\begin{equation*}
\psi(\xi)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \frac{2 i \operatorname{tg} \pi p T(p)}{2 x \sin \pi p-x^{2}+4 p(p+1)} R_{0}^{-p-1 / 2} e^{p \xi} d p \quad\left(-\frac{1}{2}<\sigma<0\right) \tag{13}
\end{equation*}
$$

Introducing $x=e^{\xi}, r(x)=\psi(\xi)$, and referring to equation (7), taking into consideration that

$$
\frac{1}{\pi} \int_{0}^{\infty} \frac{t^{p}}{t-x} d t=-\frac{x^{p}}{\operatorname{tg} \pi p}
$$

we obtain

$$
q(x)=-\frac{1}{\pi i} \int_{\sigma-1 \infty}^{\sigma+i \infty} \frac{R_{0}^{-p-1 / 2} x^{p-1 / 3} T(p)}{2 x \sin \pi p-x^{2}+4 p(p+1)} d p
$$

It is convenient to introduce $s=p+1 / 2$ as the variable of integration. Then, as a final result, we will have

$$
\begin{equation*}
q(x)=-\frac{1}{\pi i x} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{S(s)}{4 s^{2}-2 x \cos \pi s-\left(1+x^{2}\right)}\left(\frac{x}{R_{0}}\right)^{s} d s \quad\left(0<\gamma<\frac{1}{2}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
S(s)=- & 2 Q x \cos (\pi-\alpha) s+Q\{-2 s \sin \alpha \sin [\pi s-\alpha(s+1)]-\cos \alpha s+ \\
& +2 s(2 s-x) \cos \alpha \cos (s+1) \alpha+x(2 s-x) \cos \alpha s\}+ \\
& +P\{-2 s \sin \alpha \cos [\pi s-\alpha(s+1)]-\sin \alpha s+ \\
& +2 s(2 s-x) \cos \alpha \sin (s+1) \alpha-x(2 s-x) \sin \alpha s\}
\end{aligned}
$$

While computing integrals, when $x<R_{0}$, the calculations are taken from the right, and when $x>R_{0}$ from the left side of the straight line γ. In particular, when $x<R_{0}$, we have

$$
\begin{equation*}
q(x)=\frac{1}{x} \sum_{k}\left(\frac{x}{R_{0}}\right)^{\rho_{k}}\left[\operatorname{Re} \Omega_{k} \cos \left(\theta_{k} \ln \frac{x}{R}\right)-\operatorname{Im} \Omega_{k} \sin \left(\theta_{k} \ln \frac{x}{R}\right)\right] \tag{15}
\end{equation*}
$$

where

$$
\Omega_{k}=\frac{S\left(s_{k}\right)}{x \pi \sin \pi s_{k}+4 s_{k}}, \quad s_{k}=\rho_{k}+i \theta_{k} \quad\left(\rho_{k}>0,0<\theta_{k}<\frac{1}{2} \pi\right)
$$

and S_{k} are the roots of equation

$$
\begin{equation*}
4 s^{2}-2 x \cos \pi s-\left(1+x^{2}\right)==0 \tag{16}
\end{equation*}
$$

As equation (16) always has a root for which $\rho<1$, it is possible to draw the conclusion that when $X_{y}=1 / 2 q(x)$, a corner of the elastic quadrant is approached, the stress, in absolute value, keeps increasing to infinity, while simultaneously changing its sign an infinite number of times.

If we assume that $s=2 \lambda+1$, then equation (16) will coincide with the equation for determination of order of stress increase in the proximity of the angle. The latter equation was obtained in paper [1].

The author is grateful to A.Ia. Aleksandrov for numerous valuable suggestions during this work.

BIBLIOGRAPHY

1. Williams, M.L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J.-1. Appl. Mech., Vol. 20, No. 4, 1952.
2. Huth, J.H. : The complex-variable approach to stress singularities. J.-1. Appl. Mech.. Vol. 20, No. 4, 1953.
3. Williams, M.L. The complex-variable approach to stress singularities. J.-1. Appl. Mech., Vol. 23, No. 3, 1956.
4. Muskhelishvili, N. I. Singulyarnye integralnye uravnenia (Singular Integral Equations). Gostekhizdat, 1946.
5. Melan, E., Der Spannungszustand der durch eine Einzelkraft im Innern beanspruchten Halbscheibe. Z. angew. Math. Mech., 6, 1932.
